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Supplemental Figures and Text 
 
 

 
 
Figure S1. Confusion matrices by decision tree and AdaBoost on the multi-class classification of 
wild type and mutants, including both the haploid and diploid strains.  Each row of the confusion 
matrix represents a different genotype (actual class), and the values within a row show the 
proportion of colonies that were predicted by the classifier to belong to the genotype specified by 
each column (predicted class).  The color intensity, ranging from 0 to 1, corresponds to the 
fraction of colonies that were assigned to a particular predicted class.  Successful classification 
results in high values along the diagonal, where each actual genotype intersects with its 
corresponding predicted genotype. 
 
 
 
Image segmentation 
 
Image segmentation plays an important role in modern biomedical imaging applications. 
Common methods include intensity thresholding using global or local threshold methods (1, 2), 
feature detection including edge detection (3) or Gabor filter (4), morphological filtering (5), 
region growing (6), classification or clustering (7, 8), and deformable models (9), etc. More 
recent developments include normalized cuts that build hierarchical partitions by using the low-
level coherence (10), graph based approaches using pairwise region comparison (11), and energy 
minimization (12), etc. We refer the reader to some general surveys in the literature (13, 14). 
Here, we applied these recent segmentation techniques including normalized cuts (10) and 
energy minimization (12) to the collected images to segment the colonies grown on the petri 
dish, shown in Figure S2. However, these solutions were inadequate. We implemented the 
colony segmentation method described in the main text and illustrated in Figure S3. 
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Figure S2. Image segmentation comparison on raw images. Image segmentation by (A) 
normalized cuts (10), (B) energy minimization (12) and (C) the method described in Figure S3. 
 
 
 

 
Figure S3. Segmentation of the colonies. (A) Edge detection was applied to the raw image. (B) 
The detected edges were dilated to form a closed boundary surrounding the colony of interest. 
(C) The interior pixels of the colonies were detected. (D) Identification of the colony with the 
largest area by counting the number of connected components found in (C) and the area of each 
connected component. The boundary of the colony of interest is outlined with the red curve.  
 
 
 
Ensemble learning methods 
 
AdaBoost was designed for binary classification. It repeatedly applies a base learning algorithm 
while maintaining a set of weights (15, 16). The weights are uniformly distributed at the 
initiation. Then at each round, the weights are updated such that the misclassified samples have 
larger weights. Let 𝑤!,! be the weight on sample 𝑖 at the 𝑡 round, and let 𝜖! be the error rate 
measured with respect to the distribution 𝑤!,! using the classifier ℎ!(𝒙!). The classifier ℎ!(𝒙!) is 
a weak learner, which can be a decision tree for instance. Then update the weights 𝑤!!!,! =
𝑤!,!𝑒!!!(!!!!!(𝒙!)), in which 𝛼! = log( 1− 𝜖! /𝜖!), 𝐼 is the indicator function, and ℎ!(𝒙!) is the 
classifier prediction for sample 𝒙!. AdaBoost.M2 generalizes the method to multi-class 
classification problems by reducing the multiclass problem to a larger binary problem (15). 
Random forest can be viewed as a bagging method, which is combined with random feature 
selection. Each tree is trained independently, in which it depends on the values of a random 
sample. Suppose we sample with replacement the rows of 𝑿 and 𝒀 for 𝑁 times to obtain a 
bootstrap sample 𝑿! and 𝒀!, where 𝑏 = 1,2,… ,𝐵. Then a decision tree is trained with random 
selection of features at each node to determine the split. The bagging prediction is defined by 
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taking the average among these trees (17, 18). We refer the reader to (19, 20) for discussion of 
the success of these ensemble learning methods. 
 
Software 
 
We have implemented the proposed algorithm with a user-friendly graphical interface. The 
software is implemented using MATLAB. Figure S4 shows the graphical interface. The software 
consists of mainly two sections. First, the feature extraction section enables the user to load an 
image or a batch of images, and set the parameters. All the parameters shown in Figure S4 are 
the default settings, and have been used for all the analysis presented in this paper. The second 
part on visualization and classification enables the user to generate heatmaps as shown in Figure 
3 and Figure 4, along with the boxplots of the onset of bands and dots of each class. These 
extracted features can be used to differentiate the classes specified by the user. Three 
classification methods presented in the paper were incorporated into the software: decision tree, 
AdaBoost, and random forest. One can also use the software as a feature extraction and 
visualization toolbox and run further analysis using the extracted information. To use the 
software, create a folder for the colony images of the same class, and create two subfolders 
“GFP” and “RFP”. The GFP folder should contain the images of GFP fluorescence, each ends in 
“_c1.tif”. The RFP folder should contain the images of RFP fluorescence, each ends in “_c2.tif” 
and corresponds to a GFP image with the same prefix. A folder named “statistics” will be created 
after the analysis, in which the extracted features in .mat format and images of the features 
overlaid on top of the raw images are saved.  
 
 
 

 
 
Figure S4. The graphical interface consists of two parts: 1) the feature extraction and 2) 
visualization and classification. 
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Figure S5. An example illustrating the extracted features overlaid on the raw image, and the 
extracted onset frequency of bands and dots over the colony.  
 
 
 
 
 
The function of each parameter in the feature extraction panel is explained below. 
 

(a) file/folder: Select file to analyze a single image; select folder for batch processing.   
(b) Load: A dialog window opens for selecting the file or folder, depending on the 

specification of file/folder. 
(c) Clear: Clear the selection. Return to step (a-b) 
(d) colony edge detection: Sensitivity thresholds for the Canny edge detection method. The 

higher the threshold, the fewer colony edge pixels detected. 
(e) colony dilation:  The radius (pixels) of a flat, disk-shaped structuring element. The 

software uses the structuring element to dilate the binary image of (e), such that the 
detected edges form a close boundary of the colony. 

(f) bands/dots edge detection: Sensitivity thresholds for the Canny method. The higher the 
threshold, the fewer edge pixels of bands/dots detected. 

(g) bands/dots dilation: The radius (pixels) of a flat, disk-shaped structuring element. The 
software uses the structuring element to dilate the binary image of (f), such that the 
detected edges form a close boundary of each band/dot.  

(h) bands/dots intensity threshold: A number between 0 and 1, denoted as α. A local 
threshold is set as the αth quantile of the pixel intensities of each connected component 
formed by detected bands/dots in (f-g). Each local threshold is applied to the interior 
pixels of the corresponding connected component. If the intensity of an interior pixel is 
above than the threshold, it is labeled as bands/dots. 
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(i) buffer around bands: The width (pixels) of a buffer around bands to be excluded from 
analysis. This is useful when there exist large bands with high fluorescence intensity that 
may create bias in the estimation.  

(j) bands/dots area threshold: The threshold used to divide the detected bands/dots into the 
class of bands and the class of dots. If the number of pixels of a connected component is 
above the threshold, that connected component is labeled as a band; otherwise, it is 
labeled as a dot. 

(k) Run feature extraction: Apply the parameters specified in step (d-j) to extract the features. 
To use the default settings, press the button “Reset parameters”. 

(l) smoothing kernel bandwidth: The kernel bandwidth applied to the onset frequency of 
bands and the onset frequency of dots, illustrated in Figure 2. 

(m) marker size: the marker size of the green and blue dots shown in Figure S5. 
(n)  Display extracted features: Display the extracted features overlaid on top of the raw 

images, as shown in Figure S5. 
(o) To use the default settings, press the button “Reset parameters”. 
(p) To analyze another file or batch, return to step (a). 

 
 
 
The function of each parameter in the visualization and classification panel is explained below. 

(a) Select/Add classes: A dialog window opens for selecting a folder to classify. Edit the 
class name of each folder. Folders with the same class name will be treated as the same 
class. There must be at least two classes specified. 

(b) Clear: Clear the selection in step (a). Return to step (a). 
(c) smoothing kernel bandwidth: the kernel bandwidth applied to the onset rate of bands and 

the onset rate of dots.  
(d) Run visualization: Create heatmaps of the smoothed and unsmoothed onset rate of bands 

and the onset rate of dots, as shown in Figure 3.  
(e) Decision tree / Adaboost with decision tree / Random forest: Select the classification 

method. 
(f) Run classification: Use the features smoothed by the kernel bandwidth specified in step 

(c) to predict the class labels. A heatmap of the confusion matrix will appear after leave-
one-out test is done. 
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Supplemental Tables 

 

Yeast strains 

Strain Genotype 

JRY9628 mat∆::natMX lys2 his3-11,15 leu2-3,112 can1-100 HMLα-α2∆::cre  
ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1 

JRY9634 mat∆::natMX lys2 his3-11,15 leu2-3,112 can1-100 HMLα-α2∆::cre  
ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1 hst1∆::hphMX 

JRY9635 mat∆::natMX lys2 his3-11,15 leu2-3,112 can1-100 HMLα-α2∆::cre  
ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1 hst2∆::hphMX 

JRY9636 mat∆::natMX lys2 his3-11,15 leu2-3,112 can1-100 HMLα-α2∆::cre  
ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1 hst3∆::hphMX 

JRY9637 mat∆::natMX lys2 his3-11,15 leu2-3,112 can1-100 HMLα-α2∆::cre  
ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1 hst4∆::hphMX 

JRY9731 MATα/mat∆::kanMX lys2/lys2 his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 can1-100/can1-100 
HMLα/HMLα-α2∆::cre  ura3-1/ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1  

JRY9732 
MATα/mat∆::kanMX lys2/lys2 his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 can1-100/can1-100  
trp1-1/TRP1 sir1∆::TRP1/SIR1 HMLα/HMLα-α2∆::cre  
ura3-1/ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1 

JRY9733 
MATα/mat∆::kanMX lys2/lys2 his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 can1-100/can1-100  
trp1-1/TRP1 sir2∆::TRP1/SIR2 HMLα/HMLα-α2∆::cre  
ura3-1/ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1  

JRY9734 
MATα/mat∆::kanMX lys2/lys2 his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 can1-100/can1-100  
trp1-1/TRP1 sir3∆::TRP1/SIR3 HMLα/HMLα-α2∆::cre  
ura3-1/ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1 

JRY9735 
MATα/mat∆::kanMX lys2/lys2 his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 can1-100/can1-100  
trp1-1/TRP1 sir4∆::TRP1/SIR4 HMLα/HMLα-α2∆::cre  
ura3-1/ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1 

JRY10639 MATα/mat∆::natMX lys2/lys2 his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 can1-100/can1-100 
HMLα/HMLα-α2∆::cre ura3-1/ura3∆::PGPD-loxP-yEmRFP-TCYC1-hphMX-loxP-yEGFP-TADH1 

JRY10640 
MATα/mat∆::natMX lys2/lys2 his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 can1-100/can1-100 
HMLα/HMLα-α2∆::cre ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1/ 
ura3∆::PGPD-loxP-yEmRFP-TCYC1-hphMX-loxP-yEGFP-TADH1 

JRY10641 MATα/mat∆::natMX lys2/lys2 his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 can1-100/can1-100  
HMLα-α2∆::cre/HMLα-α2∆::cre ura3-1/ura3∆::PGPD-loxP-yEmRFP-TCYC1-hphMX-loxP-yEGFP-TADH1 

JRY10642 
MATα/mat∆::natMX lys2/lys2 his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 can1-100/can1-100  
HMLα-α2∆::cre/HMLα-α2∆::cre ura3∆::PGPD-loxP-yEmRFP-TCYC1-kanMX-loxP-yEGFP-TADH1/ 
ura3∆::PGPD-loxP-yEmRFP-TCYC1-hphMX-loxP-yEGFP-TADH1 

Table S1. All strains used in this study were derived from W303.   
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Significance test of the onset frequencies of various haploid and diploid yeast strains 
 
 
 
Strain Relevant genotype Avg onset frequency Two-sample t-test with WT 
JRY9628 WT haploid 8.33e-04  
JRY9364 hst1Δ 4.33e-04 8.13e-06 
JRY9635 hst2Δ 6.47e-04 4.55e-02 
JRY9636 hst3Δ 2.07e-03 8.15e-10 
JRY9637 hst4Δ 7.31e-04 2.64e-01 
Table S2. Average of the mean onset frequencies and significance test of haploid cells. The 
mean onset frequencies were averaged over colonies of the same class. 
 
 
 
Strain Relevant genotype Avg onset frequency Two-sample t-test with WT 
JRY9731 WT diploid 8.74e-05  
JRY9732 sir1Δ/SIR1 1.42e-04 1.33e-02 
JRY9733 sir2Δ/SIR2 7.37e-05 3.38e-01 
JRY9734 sir3Δ/SIR3 1.99e-04 6.11e-04 
JRY9735 sir4Δ/SIR4 2.74e-04 6.02e-02 
Table S3. Average of the mean onset frequencies and significance test of diploid cells. The mean 
onset frequencies were averaged over colonies of the same class. 
 
 
 
Strain Ploidy HML::cre RFP-GFP Avg onset frequency Two-sample t-test with JRY10639 
JRY9628 1n 1 1 7.66e-04 6.24e-14 
JRY10639 2n 

 
1 1 1.23e-04  

JRY10640 2n 1 2 3.21e-04 2.19e-05 
JRY10641 2n 2 1 3.92e-04 5.54e-06 
JRY10642 2n 2 2 7.33e-04 1.82e-10 
Table S4. Average of the mean onset frequencies and significance test of cells with the indicated 
copy numbers of HML::cre and the RFP-GFP cassette. The mean onset frequencies were 
averaged over colonies of the same class. 
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Significance test of the onset frequencies of colonies grown under various environmental 
conditions 
 
 
 
[vitamin C] Avg onset frequency Two-sample t-test with 0mM 
0    mM 10.00e-04  
0.1 mM 9.48e-04 3.29e-01 
1    mM 8.89e-04 2.07e-02 
10  mM 7.26e-04 7.42e-06 
Table S5. Average of the mean onset frequencies and significance test of colonies grown under 
varying levels of vitamin C. The mean onset frequencies were averaged over colonies of the 
same class. 
 
 
 
[NiCl2] Avg onset frequency Two-sample t-test with 0mM 
0      mM 9.15e-04  
0.05 mM 5.45e-04 2.16e-13 
0.1   mM 3.98e-04 6.19e-17 
Table S6. Average of the mean onset frequencies and significance test of colonies grown under 
varying levels of NiCl2. The mean onset frequencies were averaged over colonies of the same 
class. 
 
 
 
[H2O2] Avg onset frequency Two-sample t-test with 0mM 
0    mM 1.14e-03  
0.1 mM 1.07e-03 1.71e-01 
0.5 mM 9.32e-04 1.74e-04 
Table S7. Average of the mean onset frequencies and significance test of colonies grown under 
varying levels of H2O2. The mean onset frequencies were averaged over colonies of the same 
class. 
 
 
 
Sugar Avg onset frequency Two-sample t-test with Glucose 
Glucose 8.81e-04  
Galactose 2.41e-03 1.80e-21 
Raffinose 2.89e-03 8.84e-26 
Table S8. Average of the mean onset frequencies and significance test of colonies grown with 
different sugars. The mean onset frequencies were averaged over colonies of the same class. 
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